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Overview

1. Consumption



Consumer’s Problem

Modelling demand: one of the first problems of economics
Cournot, Walras, Menger, Jevons, Pareto, Marshall, Samuelson, Hicks, Debreu, Arrow,
Stiegler, etc.

Today: classical consumer theory
a straightforward application of what we've seen
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Utility Maximisation Problem

Bundles of goods: X = Rﬁ
Preference relation: =C X?, Utility function: u : X — R represents = (assumed 3)

Prices: p € R’i+, Income: w > 0  Budget constraint: B(p,w) :=={x € X | p - x < w}

Definition (Utility Maximisation Problem)

x(p, w) := argmaxs B(p, w) = arg max u(x), vip,w) = sup u(x) (UMP)
~ X€EB(p,w) XEB(p,w)

(Marshallian) Demand: x(p, w) C B(p,w); set of maximisers

Indirect Utility: v(p, w); maximised utility
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General Properties

Proposition

v(p, w) is quasiconvex in (p, w), weakly decreasing in p, and weakly increasing in w.

Proof

(1) WTS quasiconvexity.
Take any (p,w), (o', w') € {(p,w) | v(p,w) < V}and A € [0,1].
Let (0", w") = Mp,w) + (1 = X)(p', w).
WTS v(p”, w") < max{v(p, w), v(p’, w")}, VA € [0,1].
e WTS VX" € X:p” - x" <w”, (i) x" € B(p,w) or (i) x" € B(p’,w').
Suppose not: Thenp - x” >wandp’ - x”/ >w'
= p’ X" =p+(A-p) X" >+ - =w
= x" ¢ B(AMp,w) + (1-1)(p’,w)), contradiction.
e Hence, x”” € Bp,w) = u(x") < v(p,w) < max{v(p, w), v(p’, w')}
orx” € Blp',w') = u(x") < v(p’,w') < max{v(p, w),v(p’, w')}.
(2) WTS vis weakly decreasing in p, and weakly increasing in w.
p=p.w<w = Blpw) CBpE w) = v(p,w) < v(p', W) (why?).
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General Properties

Proposition
v(p, w) and x(p, w) are homogeneous of degree zero in (p, w): VA > 0, v(Ap, Aw) = v(p, w)
and x(Ap, Aw) = x(p, w).

Proof
As B(Ap,Aw) = B(p, w), then arg maxy B(p, w) = arg maxs B(Ap, Aw). O

If you scale up prices and income, then the consumer is able to afford exactly the same
bundles. Both indirect utility and maximisers remain the same.

Money neutrality!
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Implications of Continuity

Proposition

If > is continuous, then x(p, w) is nonempty.
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Correspondences: A Refresher

Definition

A correspondence F from X to Y is a mapping that associates with each element x € X
asubsetA C Y, denoted by F: X = Yor F: X — 2¥, with F(x) C V.
For A C X, define the image of F as F(A) := UyeaF(x).

Definition

Let (X, dy) and (Y, dy) be metric spacesand F: X = Y. Fis

(i) upper hemicontinuous (uhc) at x; € X iff Vopen set U C Y, st. F(xg) C U,
Je > 0: F(Be(xg)) C U;

(i) upper hemicontinuous (uhc) if it is upper hemicontinuous at any xg € X;

(iii) lower hemicontinuous (lhc) at xq € X if Vopenset U C Y, st F(xg) nU 7 0,
Je>0:F(x)NU 70, Vx € Be(xg);

(iv) lower hemicontinuous (lhc) iff it is lower hemicontinuous at any xq € X;
(v) continuous at xg € X if it is both uhc and |hc at xg;
(vi) continuous if it is both uhc and Ihc.

Gongalves (UCL) 3. Optimal Choice and Consumer Theory




Correspondences: A Refresher

{ Proposition
Let (X, dy) and (Y, dy) be metric spacesand F: X = Y. Fis
(i) Ihc at xq if and only if V sequence {xn}n C X : xn — Xg and Vyg € F(xg), thereis N
and a sequence {yn}psn Sat. ¥n € F(xn), S.t. ¥n — Yo.
(i) uhc (and compact-valued) at xq if (and only if) V sequence {xn}n C X : xn — Xg
and V sequence {yn}n : yn € F(xn), 3 subsequence {ymtm C {yn}n St ym —
Yo € F(xo).

Part (i) says lhc = every point yg € F(xg) can be reached by some sequence yn € F(xn).

Part (i) that uhc and compact-valuedness = limit yg of converging sequences
yn € F(xn) is point in limitting set F(xq).

Read lecture notes on correspondences.
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Implications of Continuity (Cont'd)

{ Berge’s Maximum Theorem

Let X and ® be metric spaces, f : X x ® — R be a continuous function,and B: @ = X
be a non-empty and compact-valued correspondence.
Let £*(8) = supycp(e) f(x, 8) and X*(8) := arg sup,cp(e) f(x, 6).

If B is continuous at & € ©, then f* is continuous at 8 and X* is uhc, nonempty, and
compact-valued at 6.

Very powerful stuff that can be applied off-the-shelf!

{ Proposition

If > is continuous, then x(p,w) is upper hemicontinuous, nonempty- and compact-
valued in (p, w).
Further, if u is a continuous u-representation of =, v(p, w) is continuous.

(Proof left as an exercise.)
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Proposition
If >~ is convex, then x(p, w) is convex. If = is strictly convex, then x(p, w) contains at

most one element.

Corollary
If - is continuous and strictly convex, then x(p, w) is continuous in (p, w).
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Implications of Local Non-Satiation

Proposition (Walras's Law)

If = is locally non-satiated, then for any x € x(p, w), and any (p,w) € R’i+ xRy, p-Xx=w.

Proof

Let x € x(p, w); suppose p - x <w. 3e > 0:Vx' € Be(x), p - X' < w.
Local nonsatiation = 3x” € Be(x) : X/ = x.
As x"" € B(p,w), then x ¢ argmaxs B(p, w). O
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Implications of Local Non-Satiation

Proposition

If uis continuous and locally nonsatiated, then v(p, w) is strictly increasing in w.

Proof

w<w = B(p,w) C B(p,w).
Take x € x(p,w) and X’ € x(p, w') (which exist; why?).

x € x(p,w) C B(p,w) = p-x < w <w, and therefore it violates Walras's Law.

Hence, x ¢ argmaxs B(p,w') 3 X' = x' = x <= v(p,w') = u(x’) > u(x) = v(p,w). O
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Implications of Homotheticity

Proposition

Let every consumer i € [ have income w; > 0 and identical preferences =. If = is
continuous, homothetic and strictly convex, then >, x(p, w;) = x(p, >_;c; Wi).

Simple aggregation result!

Proof

- homothetic = x € x(p,1) < w-x € x(p,w).
> strictly convex = |x(p,w)| < 1.
= continuous = x(p, w) 7 0.

= i X, w;) = el Wi -x(p, 1) = x(p, el Wi)-
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Overview

3. Expenditure Minimisation Problem
— General Implications
— Implications of Continuity
— Implications of Local Non-Satiation
— Implications of Convexity



Expenditure Minimisation Problem

‘Dual problem’ of UMP: given a utility level u, minimise expenditure, subject to attaining
at least a prespecified utility threshold

U := co(u(X))
(convex hull of A: smallest convex set that contains A)

Fixue UCR

Definition (Expenditure Minimisation Problem)

h(p,u) == argmin p-x, e(p,u):= inf  p-x (EMP)
xeXlu(x)>u XeX|u()>u

(Hicksian) Demand: h(p,u) C X; set of minimisers

Expenditure Function: e(p, u)
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General Implications

Proposition

h is homogeneous of degree zero in p.
e is homogeneous of degree one in p.

By definition: VA > 0, h(Ap, u) = h(p, u) and e(Ap, u) = Ae(p, u). O
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General Implications

Proposition

eis concave inp.

Proof

(Immediately: e is the infimum over concave functions... But, direct proof:)

Fixp,p’ € R, ue U,andr € [0,1]. Letp” = Ap+(1-A)p’ and A = {x € X | u(x) > u}.
VX €A ()p-x>infueap-x=relp,u)and (i) p’ - x > e(p’, u).

= WxeA Mp+1-2)p) x> relp,u)+(1- Ve, u).

= e(p+(1-2)p",u) = infuealrp + (1= 1)p") - x > Ae(p,u) + (1 = Me(p’, u).
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Supergradient

Definition

c € RN is supergradient of f : X — Ratxg € X iff f(y) < f(xg) + ¢ - (¥ — Xo), Wy € X.
Set of supergradients/superdifferential of f at xq is denoted by df (xq).

Theorem

Let X C R¥ be a convex set and f be a real-valued function on X. f is concave on int(X)
if and only if ¥x € int(X), af(x) 7 0.

Intuition:
e Pickx,y,z € X. Forc € of(x), f(y) < f(x)+c-(y—x)and f(z) < f(x)+c- (z—X).
e By convex combination of the two, with A € (0, 1),
M@y)+ (1 -0f(z) < fx)+chy+(1-1)z~-x).
e Choosing x = Ay + (1 - A)z delivers concavity of f.
Generalises notion of derivative to functions not necessarily differentiable everywhere;
e.g., f(x) = —Ixl.
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Properties of Concave Functions

We can say a lot about concave functions:

{ Proposition

(i) Foranyx € relint(X), of(x) is nonempty, convex, and compact.

(Relative interior of a convex set A, relint(A) = {x € A |Vy €e A\{x},Fz € AL €
0,)st.x=w+(1-A)z})

(i) Foranyc € df(x)and ¢’ € of(x’), (¢’ —¢)- (x' —x) < 0.

(i) If fis continuous at x, then the superdifferential of (x) is a singleton if and only if
is differentiable at x. In this case, f'(x) = ¢ € f(x) = {c}.

(iv) " exists almost everywhere in int(X) (Alexandrov theorem).

(v) Ifk =1,atany x € intX, af(x) = [fi(x), f~(x)], where f_, f} denote the left- and right-
derivatives of f.
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Hicksian Demand

Lemma

If Xg € h(pg, U), then Xq is a supergradient of e(-, u) at pg.

Proof

As po - Xo = e(pg, U) and p - xg > e(p, u), then, Vp € R,, we have e(p, u) < e(pg, u) + Xg -
(b = po). 0

Theorem (Compensated Law of Demand)

Ifp’ > p,x € h(p,u),and x’ € h(p’,u), then (' —=p) - (x' —=x) <0

Proof

Follows immediately from property (ii) of concave functions and the fact that Hicksian
demand is a supergradient of e. O

prf =p; Vj #iand pj > p;, then Hicksian demand sat. x; < x;.
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Monotonicity

Proposition

e is weakly increasing in p and u.

Proof

Take v’ > uandp’ > p.
e Vp" € RK, transitivity implies {x € X | u(x) > u} D fx € X | ux) > U} =

e(p//’ U) S e(PH, U/).

ovu" €U p-x<p'-xVx:u(x) > u”, whichimplies e(p, u”) < e(p’, u”). O
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Implications of Continuity

Proposition
If uis continuous, then e(p, u) is continuous and h(p, u) is nonempty, compact-valued,
and uhc in (p, u).

(Proof left as an exercise.)

{ Lemma

If uis continuous, then ¥x € h(p, u), u(x) = u.

Proof

Suppose u(x) > u. Continuity = 3A €[0,1) : u(Ax) > u.

Butthenp-x>p-Axand u(lx) >u = x ¢ h(p, u), a contradiction. O

Compensated demand: how the consumer substitutes across the different goods while
attaining the same utility level.
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Implications of Local Non-Satiation

Theorem

Let = be locally nonsatiated and u be a continuous utility representation of . Then
(i) h(p,v(p,w)) = x(p,w) and e(p, v(p, w)) = w,
(ii) hip,u) = x(p, e(p,u)) and u = v(p, e(p, u)).

(Proof left as an exercise.)
Connect Marshallian and Hicksian demand!

Compensated demand: Increase in prices; how much money needed to keep utility
constant at u? e(p, u)
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Implications of Convexity

{ Proposition

(i) If = is convex, then h(p, u) is convex.

(i) If = is strictly convex and u is continuous, then h(p, u) is a singleton, continuous

in (p, u), and h(p, u) = ej(p, u).

Proof

() Fixx,x" € h(p,u)and A € [0,1].
p-(Ax+(1-2)x) =e(p,u)and u(x + (1= 2)x") > min{u(x), u(x')} > u
— M+ (1-1)x € h(p,u).

(i) Suppose 3x,x" € h(p,u) with x #x’. Then for A € (0,1), x” = Ax+ (1= A)x" € h(p, u)
by (i). Continuous u = u(x”) = u while - strictly convex = u(x") >
min{u(x), u(x)} > u, contradiction.

O
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Solving Optimisation Problems using Calculus

You are expected to be able to handle constrained optimisation problems using
Lagrangian methods and Karush-Kuhn-Tucker conditions.
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Overview

5. Afriat’s Theorem



Afriat's Theorem

Consumer Choice in the Wild
Dataset: D = {(xt, pr)}=1,.,7

Question: can data be rationalised by utility-maximising consumer behaviour?
ie,3x(, ) vt=1,... T, x € x(p;, wt) for some income w;?
No income? Assume - sat. LNS = w; = p; - X¢.
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Revealed Preference

Adjust GARP to consumer demand problem:

{ Definition

() xis directly revealed preferred to x’ if x was chosen and x’ was affordable under
pip-x <p-x

X; is directly revealed preferred to Xj.1.

(iii) xis revealed strictly preferred to x’ if it was strictly less expensive than x under
p:p-X <p-x

( Definition

-----

(GARP) iff there are no x,x” s.t. x is revealed preferred to x’ and x’ is revealed strictly
preferred to x.
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Revealed Preference

{ Theorem (Afriat 1967)

statements are equivalent
(i) The dataset canberationalised by a locally nonsatiated preference relation - that
admits a utility representation.

(i) Thereisa continuous, concave, piecewise linear, strictly monotone utility function
u that rationalises the dataset.

(i) The dataset satisfies GARP.

(iv) There exist positive {ut, Athe[ry sSuch thatus < up+Apy-(xs —x¢), forallt,s =1, T.

Intuition:

e (i) and (ii): with finite data LNS indistinguishable from ( continuity, concavity, piecewise
linearity, and strict monotonicity); the latter pose no additional constraints on the
(finite) data.

e GARP (appropriately redefined) as the exact condition needed to rationalise data.

e (iv) far easier to check than GARP: reduces problem to simple linear programming.
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Revealed Preference
{ Theorem (Afriat 1967)

Letbe D = {(x;, p1)}1=1,. 7 be a collection of chosen bundles x; at prices p;. The following
statements are equivalent
(i) Thereisa continuous, concave, piecewise linear, strictly monotone utility function
u that rationalises the dataset.

(iv) There exist positive {ut, At} Such that us < ug+Apy- (xs—xy), forallt,s =1,.., T.

Intuition:
e (iv) far easier to check than GARP: reduces problem to simple linear programming.

- If u concave, then supergradients always exist, and, as u is differentiable almost
everywhere (by concavity), du(x) = {t/(x)} almost everywhere.

- (a.e) Vxs, u(xs) < u(xy) +U'(x¢) - (xs — x¢) (supergradient).

- Suppose u indeed differentiable. Langragian for UMP is u(x) + A - (W — p - X).
FOC: U'(x) = Ap.

- Supergradient: Vg € ou(x;) and Vxs, u(xs) < u(xy) + gy - (Xs — X¢).

- Supergradient for differentiable function + FOC: g; = U'(x;) = Apt and Vxs,
Uxs) < ulxe) + Gt - (Xs = X¢) = U(xe) + Pt - (Xs = Xy).
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More

Demand with Stochastic Choice: Abaluck & Adams-Prassl| (2021 QJE).

Revealed Preference with Measurement Error: Aguiar & Kashaev (2021 RES).

Measuring Choice Inconsistency: Ok & Tserenjigmid (2022 TE), Ribeiro (2024 WP).

Testing models with limited data: de Clippel & Rozen (2021 TE)
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