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Consumer’s Problem

Modelling demand: one of the first problems of economics
Cournot, Walras, Menger, Jevons, Pareto, Marshall, Samuelson, Hicks, Debreu, Arrow,
Stiegler, etc.

Today: classical consumer theory
a straightforward application of what we’ve seen
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Utility Maximisation Problem

Bundles of goods: X = Rk
+

Preference relation: ≿⊆ X2, Utility function: u : X → R represents ≿ (assumed ∃)

Prices: p ∈ Rk
++, Income: w ≥ 0 Budget constraint: B(p,w) := {x ∈ X | p · x ≤ w}

Definition (Utility Maximisation Problem)

x(p,w) := argmax≿ B(p,w) = argmax
x∈B(p,w)

u(x), v(p,w) := sup
x∈B(p,w)

u(x) (UMP)

(Marshallian) Demand: x(p,w) ⊆ B(p,w); set of maximisers

Indirect Utility: v(p,w); maximised utility
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General Properties

Proposition

v(p,w) is quasiconvex in (p,w), weakly decreasing in p, and weakly increasing in w.

Proof

(1) WTS quasiconvexity.
Take any (p,w), (p′,w′) ∈ {(p,w) | v(p,w) ≤ v} and λ ∈ [0, 1].
Let (p′′,w′′) := λ(p,w) + (1 – λ)(p′,w′).

WTS v(p′′,w′′) ≤ max{v(p,w), v(p′,w′)}, ∀λ ∈ [0, 1].

• WTS ∀x′′ ∈ X : p′′ · x′′ ≤ w′′, (i) x′′ ∈ B(p,w) or (ii) x′′ ∈ B(p′,w′).
Suppose not: Then p · x′′ > w and p′ · x′′ > w′

=⇒ p′′ · x′′ = (λp + (1 – λ)p′) · x′′ > λw + (1 – λ)w′ = w′′

=⇒ x′′ /∈ B(λ(p,w) + (1 – λ)(p′,w′)), contradiction.

• Hence, x′′ ∈ B(p,w) =⇒ u(x′′) ≤ v(p,w) ≤ max{v(p,w), v(p′,w′)}
or x′′ ∈ B(p′,w′) =⇒ u(x′′) ≤ v(p′,w′) ≤ max{v(p,w), v(p′,w′)}.

(2) WTS v is weakly decreasing in p, and weakly increasing in w.

p ≥ p′,w ≤ w′ =⇒ B(p,w) ⊆ B(p′,w′) =⇒ v(p,w) ≤ v(p′,w′) (why?). □
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General Properties

Proposition

v(p,w) and x(p,w) are homogeneous of degree zero in (p,w): ∀λ > 0, v(λp, λw) = v(p,w)
and x(λp, λw) = x(p,w).

Proof

As B(λp, λw) = B(p,w), then argmax≿ B(p,w) = argmax≿ B(λp, λw). □

If you scale up prices and income, then the consumer is able to afford exactly the same
bundles. Both indirect utility and maximisers remain the same.

Money neutrality!
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Implications of Continuity

Proposition

If ≿ is continuous, then x(p,w) is nonempty.
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Correspondences: A Refresher

Definition

A correspondence F from X to Y is a mapping that associates with each element x ∈ X
a subset A ⊆ Y , denoted by F : X ⇒ Y or F : X → 2Y , with F(x) ⊆ Y.
For A ⊆ X, define the image of F as F(A) := ∪x∈AF(x).

Definition

Let (X, dX) and (Y , dY ) be metric spaces and F : X ⇒ Y. F is
(i) upper hemicontinuous (uhc) at x0 ∈ X iff ∀ open set U ⊆ Y , s.t. F(x0) ⊆ U,

∃ε > 0 : F(Bε(x0)) ⊆ U;

(ii) upper hemicontinuous (uhc) if it is upper hemicontinuous at any x0 ∈ X;

(iii) lower hemicontinuous (lhc) at x0 ∈ X if ∀ open set U ⊆ Y , s.t. F(x0) ∩ U ̸= ∅,
∃ε > 0 : F(x) ∩ U ̸= ∅, ∀x ∈ Bε(x0);

(iv) lower hemicontinuous (lhc) iff it is lower hemicontinuous at any x0 ∈ X;

(v) continuous at x0 ∈ X if it is both uhc and lhc at x0;

(vi) continuous if it is both uhc and lhc.
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Correspondences: A Refresher

Proposition

Let (X, dX) and (Y , dY ) be metric spaces and F : X ⇒ Y. F is
(i) lhc at x0 if and only if ∀ sequence {xn}n ⊆ X : xn → x0 and ∀y0 ∈ F(x0), there is N

and a sequence {yn}n>N sat. yn ∈ F(xn), s.t. yn → y0.

(ii) uhc (and compact-valued) at x0 if (and only if) ∀ sequence {xn}n ⊆ X : xn → x0
and ∀ sequence {yn}n : yn ∈ F(xn), ∃ subsequence {ym}m ⊆ {yn}n s.t. ym →
y0 ∈ F(x0).

Part (i) says lhc = every point y0 ∈ F(x0) can be reached by some sequence yn ∈ F(xn).

Part (ii) that uhc and compact-valuedness = limit y0 of converging sequences
yn ∈ F(xn) is point in limitting set F(x0).

Read lecture notes on correspondences.
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Implications of Continuity (Cont’d)

Berge’s Maximum Theorem

Let X and Θ be metric spaces, f : X × Θ → R be a continuous function, and B : Θ ⇒ X
be a non-empty and compact-valued correspondence.
Let f∗(θ) := supx∈B(θ) f(x, θ) and X∗(θ) := arg supx∈B(θ) f(x, θ).

If B is continuous at θ ∈ Θ, then f∗ is continuous at θ and X∗ is uhc, nonempty, and
compact-valued at θ.

Very powerful stuff that can be applied off-the-shelf!

Proposition

If ≿ is continuous, then x(p,w) is upper hemicontinuous, nonempty- and compact-
valued in (p,w).
Further, if u is a continuous u-representation of ≿, v(p,w) is continuous.

(Proof left as an exercise.)
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Proposition

If ≿ is convex, then x(p,w) is convex. If ≿ is strictly convex, then x(p,w) contains at
most one element.

Corollary

If ≿ is continuous and strictly convex, then x(p,w) is continuous in (p,w).
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Implications of Local Non-Satiation

Proposition (Walras’s Law)

If≿ is locally non-satiated, then for any x ∈ x(p,w), and any (p,w) ∈ Rk
++ ×R+, p · x = w.

Proof

Let x ∈ x(p,w); suppose p · x < w. ∃ε > 0 : ∀x′ ∈ Bε(x), p · x′ < w.

Local nonsatiation =⇒ ∃x′′ ∈ Bε(x) : x′′ ≻ x.

As x′′ ∈ B(p,w), then x /∈ argmax≿ B(p,w). □
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Implications of Local Non-Satiation

Proposition

If u is continuous and locally nonsatiated, then v(p,w) is strictly increasing in w.

Proof

w < w′ =⇒ B(p,w) ⊊ B(p,w′).
Take x ∈ x(p,w) and x′ ∈ x(p,w′) (which exist; why?).

x ∈ x(p,w) ⊆ B(p,w) =⇒ p · x ≤ w < w′, and therefore it violates Walras’s Law.

Hence, x /∈ argmax≿ B(p,w′) ∋ x′ =⇒ x′ ≻ x ⇐⇒ v(p,w′) = u(x′) > u(x) = v(p,w). □

Gonçalves (UCL) 3. Optimal Choice and Consumer Theory 11



Implications of Homotheticity

Proposition

Let every consumer i ∈ I have income wi ≥ 0 and identical preferences ≿. If ≿ is
continuous, homothetic and strictly convex, then

∑
i∈I x(p,wi) = x(p,

∑
i∈I wi).

Simple aggregation result!

Proof

≿ homothetic =⇒ x ∈ x(p, 1) ⇐⇒ w · x ∈ x(p,w).

≿ strictly convex =⇒ |x(p,w)| ≤ 1.

≿ continuous =⇒ x(p,w) ̸= ∅.

=⇒
∑

i∈I x(p,wi) =
∑

i∈I wi · x(p, 1) = x(p,
∑

i∈I wi).

□
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Expenditure Minimisation Problem

‘Dual problem’ of UMP: given a utility level u, minimise expenditure, subject to attaining
at least a prespecified utility threshold

U := co(u(X))
(convex hull of A: smallest convex set that contains A)

Fix u ∈ U ⊆ R

Definition (Expenditure Minimisation Problem)

h(p, u) := argmin
x∈X | u(x)≥u

p · x, e(p, u) := inf
x∈X | u(x)≥u

p · x (EMP)

(Hicksian) Demand: h(p, u) ⊆ X; set of minimisers

Expenditure Function: e(p, u)
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General Implications

Proposition

h is homogeneous of degree zero in p.
e is homogeneous of degree one in p.

By definition: ∀λ > 0, h(λp, u) = h(p, u) and e(λp, u) = λe(p, u). □
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General Implications

Proposition

e is concave in p.

Proof

(Immediately: e is the infimum over concave functions... But, direct proof:)

Fix p, p′ ∈ Rk
++, u ∈ U, and λ ∈ [0, 1]. Let p′′ := λp + (1 – λ)p′ and A := {x ∈ X | u(x) ≥ u}.

∀x ∈ A, (i) p · x ≥ infx∈A p · x =: e(p, u) and (ii) p′ · x ≥ e(p′, u).

=⇒ ∀x ∈ A, (λp + (1 – λ)p′) · x ≥ λe(p, u) + (1 – λ)e(p′, u).

=⇒ e(λp + (1 – λ)p′, u) := infx∈A(λp + (1 – λ)p′) · x ≥ λe(p, u) + (1 – λ)e(p′, u).

□
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Supergradient

Definition

c ∈ Rk is supergradient of f : X → R at x0 ∈ X iff f(y) ≤ f(x0) + c · (y – x0), ∀y ∈ X.
Set of supergradients/superdifferential of f at x0 is denoted by ∂f(x0).

Theorem

Let X ⊆ Rk be a convex set and f be a real-valued function on X. f is concave on int(X)
if and only if ∀x ∈ int(X), ∂f(x) ̸= ∅.

Intuition:
• Pick x, y, z ∈ X. For c ∈ ∂f(x), f(y) ≤ f(x) + c · (y – x) and f(z) ≤ f(x) + c · (z – x).
• By convex combination of the two, with λ ∈ (0, 1),

λf(y) + (1 – λ)f(z) ≤ f(x) + c(λy + (1 – λ)z – x).
• Choosing x = λy + (1 – λ)z delivers concavity of f .

Generalises notion of derivative to functions not necessarily differentiable everywhere;
e.g., f(x) := –|x|.
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Properties of Concave Functions

We can say a lot about concave functions:

Proposition

(i) For any x ∈ relint(X), ∂f(x) is nonempty, convex, and compact.

(Relative interior of a convex set A, relint(A) := {x ∈ A | ∀y ∈ A \ {x}, ∃z ∈ A, λ ∈
(0, 1) s.t. x = λy + (1 – λ)z}.)

(ii) For any c ∈ ∂f(x) and c′ ∈ ∂f(x′), (c′ – c) · (x′ – x) ≤ 0.

(iii) If f is continuous at x, then the superdifferential ∂f(x) is a singleton if and only if f
is differentiable at x. In this case, f ′(x) = c ∈ ∂f(x) = {c}.

(iv) f ′′ exists almost everywhere in int(X) (Alexandrov theorem).

(v) If k = 1, at any x ∈ intX, ∂f(x) = [f ′+(x), f ′–(x)], where f ′–, f ′+ denote the left- and right-
derivatives of f .
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Hicksian Demand

Lemma

If x0 ∈ h(p0, u), then x0 is a supergradient of e(·, u) at p0.

Proof

As p0 · x0 = e(p0, u) and p · x0 ≥ e(p, u), then, ∀p ∈ Rk
++, we have e(p, u) ≤ e(p0, u) + x0 ·

(p – p0). □

Theorem (Compensated Law of Demand)

If p′ ≥ p, x ∈ h(p, u), and x′ ∈ h(p′, u), then (p′ – p) · (x′ – x) ≤ 0.

Proof

Follows immediately from property (ii) of concave functions and the fact that Hicksian
demand is a supergradient of e. □

If p′j = pj ∀j ̸= i and p′i > pi, then Hicksian demand sat. x′i ≤ xi.
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Monotonicity

Proposition

e is weakly increasing in p and u.

Proof

Take u′ ≥ u and p′ ≥ p.

• ∀p′′ ∈ Rk
++ transitivity implies {x ∈ X | u(x) ≥ u} ⊇ {x ∈ X | u(x) ≥ u′} =⇒

e(p′′, u) ≤ e(p′′, u′).

• ∀u′′ ∈ U, p · x ≤ p′ · x ∀x : u(x) ≥ u′′, which implies e(p, u′′) ≤ e(p′, u′′). □
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Implications of Continuity

Proposition

If u is continuous, then e(p, u) is continuous and h(p, u) is nonempty, compact-valued,
and uhc in (p, u).

(Proof left as an exercise.)

Lemma

If u is continuous, then ∀x ∈ h(p, u), u(x) = u.

Proof

Suppose u(x) > u. Continuity =⇒ ∃λ ∈ [0, 1) : u(λx) > u.
But then p · x > p · λx and u(λx) > u =⇒ x /∈ h(p, u), a contradiction. □

Compensated demand: how the consumer substitutes across the different goods while
attaining the same utility level.
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Implications of Local Non-Satiation

Theorem

Let ≿ be locally nonsatiated and u be a continuous utility representation of ≿. Then
(i) h(p, v(p,w)) = x(p,w) and e(p, v(p,w)) = w;

(ii) h(p, u) = x(p, e(p, u)) and u = v(p, e(p, u)).

(Proof left as an exercise.)

Connect Marshallian and Hicksian demand!

Compensated demand: Increase in prices; how much money needed to keep utility
constant at u? e(p, u)
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Implications of Convexity

Proposition

(i) If ≿ is convex, then h(p, u) is convex.

(ii) If ≿ is strictly convex and u is continuous, then h(p, u) is a singleton, continuous
in (p, u), and h(p, u) = e′p(p, u).

Proof

(i) Fix x, x′ ∈ h(p, u) and λ ∈ [0, 1].

p · (λx + (1 – λ)x′) = e(p, u) and u(λx + (1 – λ)x′) ≥ min{u(x), u(x′)} ≥ u

=⇒ λx + (1 – λ)x′ ∈ h(p, u).

(ii) Suppose ∃x, x′ ∈ h(p, u) with x ̸= x′. Then for λ ∈ (0, 1), x′′ := λx + (1– λ)x′ ∈ h(p, u)
by (i). Continuous u =⇒ u(x′′) = u while ≿ strictly convex =⇒ u(x′′) >
min{u(x), u(x′)} ≥ u, contradiction.

□
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Solving Optimisation Problems using Calculus

You are expected to be able to handle constrained optimisation problems using
Lagrangian methods and Karush-Kuhn-Tucker conditions.
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Afriat’s Theorem

Consumer Choice in the Wild
Dataset: D = {(xt, pt)}t=1,...,T
Question: can data be rationalised by utility-maximising consumer behaviour?
i.e., ∃x(·, ·) : ∀t = 1, ...,T, xt ∈ x(pt,wt) for some income wt?

No income? Assume ≿ sat. LNS =⇒ wt = pt · xt.
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Revealed Preference

Adjust GARP to consumer demand problem:

Definition

(i) x is directly revealed preferred to x′ if xwas chosen and x′ was affordable under
p: p · x′ ≤ p · x.

(ii) x is revealed preferred to x′ if ∃{xm}m=1,...,M s.t. x = x1, x′ = xM and for i = 1, ...,M–1,
xi is directly revealed preferred to xi+1.

(iii) x is revealed strictly preferred to x′ if it was strictly less expensive than x under
p: p · x′ < p · x.

Definition

The dataset D = {(xt, pt)}t=1,...,T satisfies Generalised Axiom of Revealed Preference
(GARP) iff there are no x, x′ s.t. x is revealed preferred to x′ and x′ is revealed strictly
preferred to x.
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Revealed Preference

Theorem (Afriat 1967)

Let beD = {(xt, pt)}t=1,...,T be a collection of chosen bundles xt at prices pt. The following
statements are equivalent
(i) The dataset can be rationalised by a locally nonsatiated preference relation≿ that

admits a utility representation.

(ii) There is a continuous, concave, piecewise linear, strictlymonotone utility function
u that rationalises the dataset.

(iii) The dataset satisfies GARP.

(iv) There exist positive {ut, λt}t∈[T] such that us ≤ ut+λtpt ·(xs–xt), for all t, s = 1, ...,T.

Intuition:

• (i) and (ii): with finite data LNS indistinguishable from ( continuity, concavity, piecewise
linearity, and strict monotonicity); the latter pose no additional constraints on the
(finite) data.

• GARP (appropriately redefined) as the exact condition needed to rationalise data.

• (iv) far easier to check than GARP: reduces problem to simple linear programming.
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Revealed Preference

Theorem (Afriat 1967)

Let beD = {(xt, pt)}t=1,...,T be a collection of chosen bundles xt at prices pt. The following
statements are equivalent
(ii) There is a continuous, concave, piecewise linear, strictlymonotone utility function

u that rationalises the dataset.

(iv) There exist positive {ut, λt}t∈[T] such that us ≤ ut+λtpt ·(xs–xt), for all t, s = 1, ...,T.

Intuition:
• (iv) far easier to check than GARP: reduces problem to simple linear programming.

- If u concave, then supergradients always exist, and, as u is differentiable almost
everywhere (by concavity), ∂u(x) = {u′(x)} almost everywhere.

- (a.e.) ∀xs, u(xs) ≤ u(xt) + u′(xt) · (xs – xt) (supergradient).
- Suppose u indeed differentiable. Langragian for UMP is u(x) + λ · (w – p · x).

FOC: u′(x) = λp.
- Supergradient: ∀qt ∈ ∂u(xt) and ∀xs, u(xs) ≤ u(xt) + qt · (xs – xt).
- Supergradient for differentiable function + FOC: qt = u′(xt) = λtpt and ∀xs,

u(xs) ≤ u(xt) + qt · (xs – xt) = u(xt) + λtpt · (xs – xt).
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More

• Demand with Stochastic Choice: Abaluck & Adams-Prassl (2021 QJE).

• Revealed Preference with Measurement Error: Aguiar & Kashaev (2021 RES).

• Measuring Choice Inconsistency: Ok & Tserenjigmid (2022 TE), Ribeiro (2024 WP).

• Testing models with limited data: de Clippel & Rozen (2021 TE)
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